BI Partner. Аналитические системы для бизнеса О компанииУслугиПродуктыПрактикаБиблиотекаПроектыНовости

 Главная  Библиотека – Статьи – Хранилища данных: основные архитектуры и принципы построения в реляционных СУБД

Консалтинг. Аналитические системы для бизнеса
Вакансии Контакты Обратная связь
 
 

 

 

Хранилища данных: основные архитектуры и принципы построения в реляционных СУБД

Версия в формате PDF (310 Кб)

В статье описаны основные архитектуры хранилищ данных, рассмотрены некоторые общие принципы их построения. Подробно описаны способы представления иерархий в реляционной структуре данных.

Введение

В начале восьмидесятых годов прошлого века, в период бурного развития регистрирующих информационных систем, возникло понимание ограниченности возможности их применения для целей анализа данных и построения на их основе систем поддержки и принятия решений. Регистрирующие системы создавались для автоматизации рутинных операций по ведению бизнеса – выписка счетов, оформление договоров, проверка состояния склада и т.д., и основными пользователями таких систем был линейный персонал. Основными требованиями к таким системам были обеспечение транзакционности вносимых изменений и максимизация скорости их выполнения. Именно эти требования определили выбор реляционных СУБД и модели представления данных "сущность-связь" в качестве основных используемых технических решений при построении регистрирующих систем.

Для менеджеров и аналитиков в свою очередь требовались системы, которые бы позволяли:

Анализировать информацию во временном аспекте;

Формировать произвольные запросы к системе;

Обрабатывать большие объемы данных;

Интегрировать данные из различных регистрирующих систем.

Очевидно, что регистрирующие системы не удовлетворяли ни одному из вышеуказанных требований. В регистрирующей системе информация актуальна только на момент обращения к базе данных, в следующий момент времени по тому же запросу Вы можете получить совершенно другой результат. Интерфейс регистрирующих систем рассчитан на проведение жестко определенных операций и возможности получения результатов на нерегламентированный (ad-hoc) запрос сильно ограничены. Возможность обработки больших массивов данных также мала из-за настройки СУБД на выполнение коротких транзакций и неизбежного замедления работы остальных пользователей.

Ответом на возникшую потребность стало появление новой технологии организации баз данных – технологии хранилищ данных.

Определение и типовые архитектуры ХД

В основе концепции хранилища данных лежат две основные идеи - интеграция разъединенных детализированных данных (детализированных в том смысле, что они описывают некоторые конкретные факты, свойства, события и т.д.) в едином хранилище и разделение наборов данных и приложений, используемых для оперативной обработки и применяемых для решения задач анализа. Определение понятия "хранилище данных" первым дал Уильям Г. Инмон в своей монографии [1]. В ней он определил хранилище данных как "предметно-ориентированную, интегрированную, содержащую исторические данные, не разрушаемую совокупность данных, предназначенную для поддержки принятия управленческих решений".

Концептуально модель хранилища данных можно представить в виде схемы [2], показанной на рисунке 1. Данные из различных источников помещаются в ХД, а описания этих данных в репозиторий метаданных. Конечный пользователь, используя различные инструменты (средства визуализации, построения отчетов, статистической обработки и т.д.) и содержимое репозитория, анализирует данные в хранилище. Результатом его деятельности является информация в виде готовых отчетов, найденных скрытых закономерностей, каких-либо прогнозов. Так как средства работы конечного пользователя с хранилищем данных могут быть самыми разнообразными, то теоретически их выбор не должен влиять на его структуру и функции его поддержания в актуальном состоянии.

Схема концептуальной модели хранилища данных

Рис.1 Концептуальная модель хранилища данных [3].

Физическая реализация приведенной концептуальной схемы может быть самой разнообразной. Ниже приводятся наиболее часто встречающиеся подходы.

Виртуальное хранилище данных – это система, представляющая интерфейсы и методы доступа к регистрирующей системе, которые эмулируют работу с данными в этой системе, как с хранилищем данных. Виртуальное хранилище данных можно организовать, создав ряд представлений (view) в базе данных, либо применив специальные средства доступа, например продукты класса Desktop OLAP, к которым относится, например, BusinessObjects, Brio Enterprise и другие [14].

Главными достоинствами такого подхода являются:

Простота и малая стоимость реализации;

Единая платформа с источником информации;

Отсутствие сетевых соединений между источником информации и хранилища данных.

Однако недостатков у него гораздо больше, чем достоинств. Создавая виртуальное хранилище данных, Вы создаете не хранилище как таковое, а иллюзию его существования. Структура хранения данных и само хранение данных не претерпевает изменений, и остаются проблемы:

Производительности;

Трансформации данных;

Интеграции данных с другими источниками;

Отсутствия истории;

Чистоты данных;

Зависимость от доступности основной БД;

Зависимость от структуры основной БД.

Двухуровневая архитектура хранилища данных подразумевает построение витрин данных (data mart) без создания центрального хранилища, при этом информация поступает из небольшого количества регистрирующих систем и ограничена конкретной предметной областью. При построении витрин данных используются основные принципы построения хранилищ данных, о которых пойдет речь ниже, поэтому их можно считать хранилищами данных в миниатюре. Плюсами витрин данных являются:

Простота и малая стоимость реализации;

Высокая производительность за счет физического разделения регистрирующих и аналитических систем, выделения загрузки и трансформации данных в отдельный процесс, оптимизированной под анализ структурой хранения данных;

Поддержка истории;

Возможность добавления метаданных.

Построение полноценного корпоративного хранилища данных обычно выполняется в трехуровневой архитектуре (следует отметить, что здесь под трехуровневой архитектурой понимается не структура "БД – Сервер приложений – клиент"). На первом уровне расположены разнообразные источники данных – внутренние регистрирующие системы, справочные системы, внешние источники (данные информационных агентств, макроэкономические показатели). Второй уровень содержит центральное хранилище данных, куда стекается информация от всех источников с первого уровня, и, возможно, оперативный склад данных (ОСД). Оперативный склад не содержит исторических данных и выполняет две основные функции. Во-первых, он является источником аналитической информации для оперативного управления и, во-вторых, здесь подготавливаются данные для последующей загрузки в центральное хранилище. Под подготовкой данных понимают их преобразование и осуществление определенных проверок. Наличие ОСД просто необходимо при различном регламенте поступления информации из источников. Третий уровень в описываемой архитектуре представляет собой набор предметно-ориентированных витрин данных, источником информации для которых является центральное хранилище данных. Именно с витринами данных и работает большинство конечных пользователей.

Проектирование структуры реляционного хранилища данных

ХД строятся на основе многомерной модели данных. Многомерная модель данных подразумевает выделение отдельных измерений (время, география, клиент, счет) и фактов (объем продаж, доход, количество товара), которые анализируются по выбранным измерениям. Многомерная модель данных физически может быть реализована как в многомерных СУБД, так и в реляционных. В последнем случае она выполняется по схеме "звезда" или "снежинка". Данные схемы предполагают выделение таблиц фактов и таблиц измерений. Каждая таблица фактов содержит детальные данные и внешние ключи на таблицы измерений. Теория построения многомерной модели данных и ее воплощение в реляционной структуре широко освещена как в зарубежной [12,13], так и в отечественной литературе [3].

К числу мало освещенных тем можно отнести проблему представления иерархий. В качестве примера измерения, широко применяющегося при анализе деятельности предприятия и имеющего иерархическую структуру, можно привести справочник статей затрат. Рассмотрим модель мест возникновения затрат (МВЗ), представленную на рис 2.

Рис.2 Модель иерархических справочников.

Модель иерархических справочников.

Классическая компьютерная наука решает проблему представления иерархий с помощью рекурсивной связи. Это простое решение позволяет помещать в одной таблице дерево любой глубины и размерности. В нашем случае рассматриваемые данные будут представлены в следующем виде:

ID

Name

Parent ID

1

Предприятие

 

2

Управление

1

3

Инфраструктура

1

4

Производство

1

5

Энергия

3

6

Сервисные услуги

3

7

Месторождение A

4

8

Месторождение B

4

Таблица 1.

 

Однако в простоте этого решения скрывается и основной его недостаток. К сожалению, стандартный SQL не поддерживает рекурсивные указатели, поэтому для представления деревьев в ХД используют другие методы.

Метод, предложенный Джо Селко (Joe Celko) [4], основан на теории множеств. В этом методе все узлы дерева проходятся в прямом порядке обхода [5] и для каждого узла заполняются два значения - левая и правая границы, причем для каждого узла ветви дерева сначала заполняется левая граница и лишь затем правая - при движении обратно от потомков к родителям. Так в нашем примере нумерация узлов будет следующая:

Нумерация левой и правой границ узлов дерева

Рис. 3 Нумерация левой и правой границ узлов дерева по методу Джо Селко (Joe Celko) [4]

При такой нумерации узлов каждый родитель содержит потомков, левая и правая граница которых лежит в интервале между левой и правой границей родителя. Аналогично все родители потомка имеют левую границу, которая меньше левой границы потомка и правую, большую правой границы потомка. Следовательно, сумму затрат для конкретного МВЗ и всех его составляющих можно получить одним запросом. Например, для получения затрат по инфраструктуре можно выполнить следующий SQL-запрос:

select sum(fact_table.cost)
from fact_table, dimension_table D1, dimension_table D2
where fact_table.dimension_id = D2.id
and D2.left >= D1.left
and D2.right <= D1.right
and D1.name = "Инфраструктура"

Для простоты работы с таким справочником кроме полей left, right стоит добавить еще два поля: "Level" – уровень узла в дереве, "Is_leaf" – флаг, показывающий является ли узел листом в дереве или нет. Таким образом, мы получаем таблицу "dimension_table" (см. таблицу 2), которая позволяет хранить дерево любой глубины вложенности и размерности и позволяет выбирать потомков и родителей с помощью одного запроса.

ID

Name

left

right

level

Is Leaf

1

Предприятие

1

16

1

N

2

Управление

2

3

2

Y

3

Инфраструктура

4

9

2

N

4

Производство

10

15

2

N

5

Энергия

5

6

3

Y

6

Сервисные услуги

7

8

3

Y

7

Месторождение A

11

12

3

Y

8

Месторождение B

13

14

3

Y

Таблица 2. Представление иерархий с помощью левой и правой границ

Другой способ, описанный Ральфом Кимбаллом [6], основан на введении вспомогательной таблицы ("helper-table"), через которую осуществляется связь таблицы фактов с таблицей измерения. Эта вспомогательная таблица отражает иерархическую структуру измерения и подчиняется следующему закону: вспомогательная таблица содержит весь набор пар "родитель-потомок", причем потомок может не быть непосредственным потомком родителя. Структура такой таблицы и ее содержимое показано в таблице 3.

Parent ID

Child ID

Distance

Is Leaf

1

1

0

N

1

2

1

N

1

3

1

N

1

4

1

N

1

5

2

N

1

6

2

N

1

7

2

N

1

8

2

N

2 2 0 Y
3 3 0 N
3 5 1 N
3 6 1 N
4 4 0 N
4 7 1 N
4 8 1 N
5 5 0 Y
6 6 0 Y
7 7 0 Y
8 8 0 Y

Таблица 3. Структура и содержание вспомогательной таблицы.

Теперь связывая таблицу фактов (см. рис. 4) с идентификатором ребенка во вспомогательной таблице, а таблицу измерений с идентификатором родителя, мы можем вычислять сумму затрат для каждого МВЗ и всех его составляющих одним запросом, как и в предыдущем случае. При этом, добавляя ограничения на поля "Distance" и "Is Leaf", мы можем легко считать затраты для любого уровня в иерархии.

Рис.4 Модель иерархического справочника с вспомогательной таблицей.

Модель иерархического справочника с вспомогательной таблицей

Например, для того, чтобы посчитать сумму затрат, возникающих в местах, находящихся по иерархии на один уровень ниже МВЗ "Инфраструктура" необходимо выполнить следующий SQL-запрос:

select sum(fact_table.cost)
from fact_table, dimension_table, helper_table
where fact_table.dimension_id = helper_table.child_id
and dimension_table.dimension_id = helper_table.parent_id
and dimension_table.name = "Инфраструктура"
and helper_table.distance = 1

Проблема проектирования иерархических справочников еще более усложняется, когда измерение может иметь несколько альтернативных иерархий и становится совсем трудноразрешимой при необходимости поддерживать историю изменения таблицы измерения.

Вообще, проблема медленно меняющихся измерений интересна сама по себе, без усложнения ее иерархичностью классификаторов. В литературе она в большинстве случаев рассматривается в контексте "факт – медленно меняющееся измерение" [7]. Такая задача, действительно, решается относительно просто добавлением в таблицу измерения даты начала и даты окончания действия записи. Изменение записи в справочнике приводит к "закрытию" старой записи и добавлению новой. Теперь, возвращаясь к примеру справочника статей затрат, пользователь, желающий получить информацию по актуальной статье затрат на какую-либо конкретную дату, должен включить ее в условие SQL запроса.

Предположим, что справочник статей затрат связан со справочником счетов бухгалтерского учета. Один или несколько бухгалтерских счетов представляют собой статью затрат. Как должно отразиться на справочнике счетов бухгалтерского учета изменение какого-либо атрибута статьи затрат? С одной стороны, с точки зрения плана счетов, изменение атрибута не приводит к изменению сущности статьи затрат и бухгалтерские проводки через план счетов должны относится на ту же статью затрат. С другой стороны, в справочнике статей затрат появилась новая запись, которая должна быть каким-то образом связана со справочником счетов. Данная проблема может быть решена с помощью разделения таблицы измерений на две - содержащую актуальную информацию и содержащую историю изменения сущности. Этот подход также позволяет решить проблему иерархического измерения с необходимостью поддержания истории изменения записей в нем.

Рассмотрим его более подробно (см. рис. 5). Таблица "dimension_actual" представляет собой таблицу измерений с первичным ключом dimension_id, содержащей корректные атрибуты измерения на сегодняшний день. С ней связана через внешний ключ dimension_id историческая таблица "dimension_history", в которой находится история изменения записей, определяемая датами начала/окончания действия записи (поля date_start, date_end). Актуальная на сегодняшний день запись также присутствует в ней с открытой датой окончания действия. Таблица фактов "fact_table" связана с таблицей измерений через вспомогательную таблицу "helper_table", которая отражает иерархическую структуру измерения.

Модель иерархического справочника с историей изменений

Рис. 5 Модель иерархического справочника с историей изменений

Описанный подход позволяет: во-первых, хранить и работать с измерением как с несбалансированным деревом; во-вторых, быстро выполнять запросы, для которых не важна история изменения измерения (не участвует таблица, содержащая историю); в-третьих, позволяет отслеживать историю изменения измерения и, наконец, разделяет отражение истории и иерархии, что значительно упрощает сопровождение измерения.

Третий важный момент, с которым часто приходится сталкиваться разработчику хранилища, связан с агрегатными значениями. Этот класс задач условно можно разделить на два подкласса. Первый рассматривает задачи создания и поддержания агрегатов по имеющимся детальным данным и довольно широко освещен в литературе [12,13]. Второй связан с тем, что источники данных для хранилища предоставляют не детальные значения, а уже некоторый набор агрегированных данных. Такая ситуация типична при создании хранилищ данных для управляющих компаний и государственных контролирующих органов, которые собирают множество отчетных форм.

Крайним случаем такого подхода является модель, которую условно можно назвать "показатель-значение". Суть ее состоит в том, что собирается большой набор показателей, характеризующих финансово-хозяйственную деятельность предприятия. Эти показатели могут быть как связанными между собой функционально, так и нет, могут отражать одни и те же величины, но с разной степенью детализации и т.д. При попытке представить такие данные в виде многомерной модели разработчик сталкивается со значительными проблемами и очень часто идет по пути создания не хранилища данных, а хранилища форм. Типичное хранилище форм строится на основе трех измерений – экономические показатели, время, отчетные формы; таблицы фактов – значения экономических показателей и вспомогательных таблиц, описывающих, как показатели и их значения расположены в отчетных формах. При анализе таких данных аналитик будет испытывать значительные трудности, связанные главным образом с тем, что показатели различных форм нельзя сравнивать между собой. Единственное, что ему остается – это отслеживание изменений показателей одной формы во времени.

Заключение

При реализации проектов по построению хранилищ данных возникает ряд общих задач, независящих от предметной области обрабатываемой информации. К числу таких задач можно отнести:

Проектирование структуры иерархических измерений;

Проектирование структуры медленно меняющихся измерений;

Проектирование и актуализация агрегатных значений.

В данной статье были рассмотрены возможные решения этих задач. В частности были приведены способы реализации иерархических измерений с помощью введения дополнительных атрибутов (левая и правая граница), а также с помощью введения дополнительной таблицы – "helper-table". Однако во всех рассмотренных задачах существуют нерешенные вопросы, требующие дальнейших исследований. В частности сложным для реализации является случай иерархических измерений с необходимостью поддержания истории изменений, которые имеют связи с какими-либо другими справочниками. В данную статью не вошли вопросы, касающиеся методов очистки данных и алгоритмов загрузки данных в хранилище. Эти темы требуют отдельного рассмотрения.

ЛИТЕРАТУРА

1.

Joerg Reinschmidt, Allison Francoise. Business Intelligence Certification Guide. IBM Red books;

2.

Inmon W. Building the Data Warehouse. – New York: John Willey & Sons, 1992;

3.

Спирли, Эрик. Корпоративные хранилища данных. Планирование, разработка, реализация. Том. 1: Пер. с англ. – М.: Издательский дом "Вильямс", 2001;

4.

Joe Celko. Trees in SQL: Intelligent Enterprise, October 20, 2000;

5.

Дональд Э. Кнут. Искусство программирования, том 1. Основные алгоритмы, 3-е изд.: – М. : Издательский дом "Вильямс", 2000.;

6.

Ralph Kimball. Help for Hierarchies: DBMS September 1998;

7.

Ralph Kimball. Slowly Changing Dimensions: DBMS April 1996;

8.

Статистический словарь: М. "Финансы и статистика", 1989;

9.

Дюк В, Самойленко А, Data mining: учебный курс. – СПб: Питер, 2001;

10.

Erhard Rahm, Hong Hai Do: Data Cleaning: Problems and Current Approaches. IEEE Data Engineering Bulletin 23(4): 3-13 (2000);

11.

Ralph Kimball: The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data Warehouses. John Wiley 1996;

12.

Maria Sueli Almeida, Missao Ishikawa, Joerg Reinschmidt, Torsten Roeber, Getting Started with Data Warehouse and Business Intelligence. IBM Red books;

13.

Nigel Pendse, OLAP Architectures: The OLAP Report, http://www.olapreport.com/Architectures.htm#top.

Автор: Александр Стулов
Ведущий специалист BI Partner

 

Материалы по данной теме

 


Хранилища данных. Консолидация информации

 

Новости

 


27 октября 2015
Многопрофильная железнодорожная группа «РТК» автоматизировала бюджетное управление, используя IBM Analytics

2 июня 2015
Служба технической поддержки BI Partner прошла аудит SAP

24 марта 2015
BI Partner объединила в едином хранилище информацию о продажах продуктов питании, средств гигиены, бытовой химии и косметики

5 марта 2015
BI Partner использует СПО Pentaho для развития хранилища данных авиакомпании AirBridgeCargo

4 декабря 2014
BI Partner внедрила систему отслеживания и анализа сроков доставки на платформе MS MDS в компании Mary Kay, Россия

Россия, 127083, Москва, ул. Юннатов, 18
Телефон: 969-2-696